
How to create 15 complex
 e-commerce projects in 8 months 

and save your mental health

Chapter 1. Sites development



Who I am

My name is Dmitry, I’m a fullstack developer

• With MODX since 2013 (Evo/Revo)

• I have created over 100 websites with MODX in last 10 years

• I have experience with MODX, Wordpress, Joomla, Bitrix, Pure PHP, JS, 
jQuery, Vue & React

• I was a team-leader in the biggest Russian IT corporation “LANIT” with 
my own team in “diHouse” – one of the biggest distributors in Russia 
as a subcompany of “Lanit”

• Now I’m a React developer in “Orion Inc.”



Disclaimer

• This is quite a simple story, and it might be useless for real pro 
developers. But as I know a lot of developers still avoid some rules 
and principles and today I’m gonna show you how you can manage 
your development process to make it simpler and faster. 

• This story isn’t about PHP at all. This story is between managing, 
business and technology. 



What it is about

• diHouse is a distribution company with a lot of partners around the 
world. Our biggest clients were such companies as Apple (we were 
the main Apple distributor in Russia before the war), Nokia, Nvidia, 
Ecovacs Robotics, XIAOMI, SONY, and a lot more. 

• Several years ago our company decided to present itself on retail 
market besides the distribution

• Our first clients in that direction were Nokia, Nvidia, Ecovacs Robotics 
and some Russian companies, like Z-Store (personal brand of the 
popular Russian rapper BASTA) 



What we had to develop

• Product catalog, synced with company ERP to check stocks and prices 
(inner API)

• Public API for our customers to get sale statistics

• A powerful basket with promo-codes and other discount activities

• Different types of shops – public, only basket, only for company 
employees

• Loyalty program

• CRM integration, different delivery systems, card payment



And we did it

• I can’t show these projects, because they were closed when the war 
began

• But I have some pictures , taken from WebArchive

• You also can check it by following this link

• https://web.archive.org/web/20220402041747/https://mobileshop.n
okia.ru/

• And it was made with MODX

https://web.archive.org/web/20220402041747/https:/mobileshop.nokia.ru/
https://web.archive.org/web/20220402041747/https:/mobileshop.nokia.ru/




The winter is coming

• In 2022, from February till April, all our retail customers left

• Our company made a new contracts with a lot of Chinese brands in 
2021 and wanted to create new sites on our platform

• Our CTO decided to switch from MODX to Bitrix for these new projects (because his last job was about “1C” – the developer of Bitrix)

• But our retail department was so in love in our MODX, and I decided to keep the idea and move it into Bitrix



A new beginning 

• We should create 15 new e-commerce projects from February to 
December 2022.

• All previous functions should be saved

• A new API should have created, because the old one had some 
performance issues

• And all of it with only 2 developers. 

• Great!



The main conditions

• We should have launched at least 1 shop per month, 2 – is optimal

• This project should be easy to develop and maintain by new 
developers or outsourcing

• Easy from-site-to-site switching process. A developer should know 
everything about this site even it his first time on this particular site. 
This is how we can develop it fast

• Our timings: 1 week – frontend development, 1-2 weeks CMS 
integration, 1 day – launch

• We should keep our project as much simple as we can. Only KISS, only 
hardcore. 



What we did and how we did it

• We have delegated frontend development process to outsourcing company 
with few rules:

• Just HTML + JS. No jQuery, no Vue, no React. A lot of developers still can’t use 
react-like frameworks and we don’t have time to teach them. Also, Vue and React 
requires a specific API to work, but MODX and Bitrix don’t have this specific 
functions – only old-fashion way. Also, I don’t want to spend my time to configure 
SSR, because we have to have a good SEO, but it’s too hard with React or Vue. 

• Simple frontend. Minimum animations, circles, 3D, canvas, etc.
• Every site should have the same HTML classes, the same structure (as much as 

possible), and the same file structure
• BEM methodology 
• Gulp as a bundler. Webpack is too complicated and it’s hard to support. 
• Regular code-review from our side
• GIT (yeah, it’s still a big problem for a lot of companies)



Backend rules

• Files elements only. Fenom for MODX, TWIG for Bitrix. 

• GIT (we have our own Gitlab server). I will show you our CI/CD in next 
slides

• The same file structure from site to site. Easy to support, easy to 
learn, easy to develop – you don’t have to think how you should call 
every new chunk, snippet or plugin. 

• We should try to use only simple packages and modules from 
marketplaces. PDOTools for MODX, D7 for Bitrix. MiniShop2 for 
MODX, Bitrix has his own integrated webshop module already. 



After we did a first project with these rules, 
all we had left to do was:
• Create new context (and named folder inside core/elements/)

• Copy new frontend and put Fenom/TWIG placeholders and snippets

• Some little different improvements from site to site (different menu, 
different filters, etc)

• Fill the site with some content

• Run

• Yeah, that’s it. I’m not kidding. 



Just imagine that

• It’s hard to believe, but when we have optimized our approach, we 
launched our last 5 sites just spending for 3 days on each.

• Let’s take a look a little bit closer



The trick

• As I said before, we have decided to follow some rules:
• The same structure of each particular site
• The same frontend layout (HEADER – HERO – BREADCRUMBS – CONTENT - 

FOOTER)
• The same BEM-methodology and the same class names

• Now let’s check our sites















The trick

• We put some rules for our designers – just keep it the same structure 
as much as you can. You can change fonts, sizes, images, icons, 
paddings, margins, colors, but please – stay in the structure. 

• Yeah, it looks very identical, but if only you have visited all of them. In 
the real world it’s impossible. No one will remember some familiar 
site back in time. 

• ALL SITES ARE FAMILIAR. ESPECIALLY E-COMMERCE. 



The trick

• And because of that our project became simple and powerful in the 
same time. We can develop & support it extremely fast and this is 
what our company expects from us. 

• Let’s take a look at the code



Each frontend files stores in templates/context_key



Each backend things stores in core/elements/context_key



Common plugins and snippets are stored in core/elements/



Also we have a special component called Dihouse 
with some special methods, utils and plugins code



This is how our plugins work
I saw this trick on MODX.pro someday



The MAIN trick

• If we have the same structure, the same code, the same principles – 
we don’t have to think about the code. Just COPY/PASTE! 

• And this is how we finished it. 

• Let’s take a look on the Template



Just put another HTML and
change the placeholders!



What about the rest of the code? 

• Nothing special, actually. Just PDOTools with Fenom, some custom 
snippets & plugins and MiniShop2. 



CI/CD

• We had our Gitlab server, but no one in the whole company knew 
how to set up the CI/CD

• I tried, but no one gave me ROOT to the server. 

• No root – no SSL. 

• NO CI/CD.

• You can start laughing, it’s really funny, I know. 



God save JetBrains
• You can create a lot FTP/SFTP/Local connections in PHPStorm

• We had DEV, STAGE and PROD. PROD is only for me, the others for the 
second developer



God save JetBrains

• Every new task – is a new branch. Master is protected. 



God save JetBrains

Pull

Create a PR

Merge

Switch back to master in IDE

Push branch on GitLab

All changes will be uploaded on the PROD

Set PROD as default Deployment server (2 slides back)

Done! You are great!



Conclusion

• Being a programmer is not only about THE CODE. 

• Good planning and architecture can save your mental health and 
probably the job

• Limitations are good. Don’t be shy to put anyone into frames if you 
know why you are doing this

• MODX is still awesome. Can you do it with some other CMS? 



Chapter 2. API development



The task

• As I said before, we have to develop new API to transfer the data
• Product items, Categories, Prices, Stocks, Users, Pictures, Product 

specifications, Orders and Orders statuses

• Company stock is about 10 000 items. The system should process it 
fast.

• Our sites are only for clients. No actions with products in /Manager, 
never. 



Limitations

• No existing solutions. We should have created it from scratch

• No existing API. We have to create it.

• Our ERP-system does not support the REST. 

• No PUT/GET/DELETE. Only POST. 

• Our CTO wanted to use KAFKA so bad



The stack

• Slim 4

• Kafka

• MySQL

• Our PHP component DiHouseExchange to process the receiving data 

• MODX / Bitrix

• PHP Unit



The scheme

ERP

Send a new data

SLIM 4
Auth
Send to Kafka
Response (401, 200, 404)

KAFKA
Get a data
Put in specific topic

CONSUMER
Call a specific class
In DiHouseExchange
And pass the data into

DiHouseExchange Component
Process the data
Response

MODX DB
Store

MODX Event
Call the DihouseExhachange
With a new data

DiHouseExchange Component
Make a JSON request
Put it into Kafka

KAFKA
Get a data
Put in a topic called CLIENT

SLIM 4
Get the data from consumer CLIENT
Make a request to the ERP
Get a response

ERP
Process the data
Send a response

MySQL
Keep all requests for logs
For 1 week, then delete it
(really useful thing)

When ERP starting the exchange

When MODX starting the exchange



Slim 4

• Receive the data

• Check auth

• Put data into Kafka

• Send response (401, 200, 404)

• Get the data from Kafka

• Create a request

• Send the data to ERP

• Receive the response

When ERP is sending a data (new products, new stocks, new prices)

When our site is sending a data (new order, new user, new order status)



Kafka

• INCOMING topic for all incoming requests. Then it will be transferred to the specific topic

• Each route in API = single topic in Kafka

• Every topic in Kafka = single consumer script in PHP

• For errors we had RETRY topic with retry_count param. 

• If retry_count > 5 – send a warning to developer

• Answers topic for responses



DiHouseExchange component

• Main class with base methods (request/response/process)

• Each entity has a specific parent class to process the data in CRUD style
• Products

• Create Product

• Update Product

• Delete Product

• Get Product

• Order
• Create Order

• Update Order

• Get Order

• etc



The main class



A specific class
Vendors, for example



A Consumer

To make it stable all consumers are running from 
Supervisord – daemon service to keep consumers alive



The API

• We took OpenAPI and made it simplier for our purposes

• Our API was stored in POSTMAN to collaborate between 
PHP-developers and our ERP-developers

• BaseAuth (1C still cannot use JWT in 2024)

• Async



Sorry for Russian labels, but this is all I have found

In this particular example we are transferring the order from our site 
to our ERP. 
Please, pay your attention – we can update created order
And also we can split the payment – total amount, 
total discounts, how many Money was spent 
with Loyalty Program, and what was the delivery price.

No one should go to the Manager to check the data. 
All data is already sent to ERP and CRM



Testing

• The whole system was covered with tests on PHPUnit

• We put tests on each route, each class, each method

• For API testing we have used PHPUnit with some kind of JSON 
generator, based on FakerPHP (really awesome thing)



An test example



What about the performance?

• We were limited by default processors. Yeah, we could just put the 
data in DB and it would be faster, but on the other side a lot of 
problems could be discovered. I don’t want to make my head ache. 

• So, our DiHouseExchange Component is using standard MODX 
processors like object/create, object/update, etc. 

• 500 product items with full bunch of data except the pictures were 
created just in 5 minutes.

• The full launch was made after me, but, as I know, everything is fine.



After 14 months after I left the company
it’s still working fine

And this is why I can say we’ve done it well. 



Thank you!

My Telegram: @zahod5277
My Instagram: zahod5277
My E-mail: zahod5277@mail.ru
LinkedIn: www.linkedin.com/in/zahod5277 

mailto:zahod5277@mail.ru
http://www.linkedin.com/in/zahod5277

